idp

v. 4 n. Único

88

DEBATES EM ECONOMIA APLICADA

WORKING PAPER

REVISITANDO A ELASTICIDADE-RENDA DE LONGO PRAZO DA ARRECADAÇÃO PREVIDENCIÁRIA NO BRASIL: EVIDÊNCIAS EMPÍRICAS NO PERÍODO 1997 A 2023

PEDRO HENRIQUE DA COSTA LEITE SÉRGIO RICARDO DE BRITO GADELHA

REVISITANDO A ELASTICIDADE-RENDA DE LONGO PRAZO DA ARRECADAÇÃO PREVIDENCIÁRIA NO BRASIL: EVIDÊNCIAS EMPÍRICAS NO PERÍODO 1997 A 2023

PEDRO HENRIQUE DA COSTA LEITE¹ SÉRGIO RICARDO DE BRITO GADELHA²

¹ Seu nome é Mestre em Economia pelo Instituto Brasileiro de Ensino, Desenvolvimento e Pesquisa (IDP). E-mail: pedrosorvete@gmail.com. ORCID: 0009-0003-3204-1085.

² Professor do Mestrado Profissional em Economia, Políticas Públicas e Desenvolvimento do Instituto Brasileiro de Ensino, Desenvolvimento e Pesquisa. Orcid: 0000-0002-4685-8438.

IDP

O IDP é um centro de excelência no ensino, na pesquisa e na extensão nas áreas da Administração Pública, Direito e Economia. O Instituto tem como um de seus objetivos centrais a profusão e difusão do conhecimento de assuntos estratégicos nas áreas em que atua, constituindo-se um think tank independente que visa contribuir para as transformações sociais, políticas e econômicas do Brasil.

DIREÇÃO E COORDENAÇÃO

Diretor Geral

Francisco Schertel

Coordenador do Mestrado em Economia José Luiz Rossi

CONSELHO EDITORIAL

Coordenação

Thiago Caldeira

Renan Holtermann

Milton Mendonça

Supervisão e Revisão

Luiz Augusto Magalhães

Mathias Tessmann

Apoio Técnico

Igor Silva

Projeto Gráfico e Diagramação

Juliana Vasconcelos

www.idp.edu.br

Revista Técnica voltada à divulgação de resultados preliminares de estudos e pesquisas aplicados em desenvolvimento por professores, pesquisadores e estudantes de pós-graduação com o objetivo de estimular a produção e a

DEBATES EM ECONOMIA APLICADA

discussão de conhecimentos técnicos relevantes na área de Economia.

Convidamos a comunidade acadêmica e profissional a enviar comentários e críticas aos autores, visando o aprimoramento dos trabalhos para futura publicação. Por seu propósito se concentrar na recepção de comentários e críticas, a Revista Debates em Economia Aplicada não possui ISSN e não fere o ineditismo dos trabalhos divulgados.

As publicações da Revista estão disponíveis para acesso e download gratuito no formato PDF. Acesse: www.idp.edu.br

As opiniões emitidas nesta publicação são de exclusiva e inteira responsabilidade dos autores, não exprimindo, necessariamente, o ponto de vista do IDP.

Qualquer citação aos trabalhos da Série só é permitida mediante autorização expressa do(s) autor(es).

SUMÁRIO

1. Introdução • • • • • • • • • • • • • • • • • • •
2. Fundamentação Teórica• • • • • • • • • • • • • • • • • • •
2.1 Modelo Teórico do Ciclo de Vida • • • • • • • • • • • • • • • • • • •
2.1.1 Modelo Teórico do Ciclo de Vida • • • • • • • • • • • • • • • • • • •
2.1.1.1 Modelo Teórico do Ciclo de Vida• • • • • • • • • • • • • • • • • • •

RESUMO: Este estudo tem por objetivo mensurar a elasticidade das receitas previdenciárias do Regime Geral da Previdência Social (RGPS) em relação ao Produto Interno Bruto (PIB) no Brasil, considerando dados mensais de janeiro de 1997 a julho de 2023. A partir de uma rigorosa análise de estacionariedade, co-integração e de causalidade temporal, considerando-se a presença de quebras estruturais, os resultados obtidos a partir da estimação de um modelo vetorial autorregressivo com mecanismo de correção de erros (VECM) indicam que as receitas previdenciárias são elásticas em relação ao PIB no longo prazo.

PALAVRAS-CHAVE: previdência social, PIB, elasticidade, cointegração, VECM.

ABSTRACT: This study aims to measure the elasticity of pension revenues from the General Social Security Regime (RGPS) in relation to the Gross Domestic Product (GDP) in Brazil, considering monthly data from January 1997 to July 2023. Based on a rigorous analysis of stationarity, co-integration and temporal causality, considering the presence of structural breaks, the results obtained from the estimation of an autoregressive vector model with an error correction mechanism (VECM) indicate that social security revenues are elastic in relation to GDP in the long term.

KEYWORDS: social security, GDP, elasticity, cointegration, VECM.

CLASSIFICAÇÃO JEL: H5; H55; C2; C22.

1. INTRODUÇÃO

A busca pela sustentabilidade da previdência social é um desafio que vem sendo enfrentado por diversos países, inclusive o Brasil. Trata-se de uma discussão complexa envolvendo aspectos econômicos, sociais, jurídicos e políticos. No Brasil, a Previdência Social pode ser classificada em três regimes distintos: o Regime Geral de Previdência Social (RGPS), o Regime Próprio de Previdência Social (RPPS) e os Regimes de Previdência Complementar (RPC). Dentre os regimes públicos, o RGPS é o que abrange a maioria dos trabalhadores brasileiros, enquanto os RPPS são os regimes dos servidores públicos e dos militares. Os RPC são regimes privados, que são oferecidos por empresas e instituições financeiras.

O RGPS é um sistema de repartição simples, em que os benefícios são pagos com as contribuições dos trabalhadores em atividade. Isso significa que os trabalhadores que estão contribuindo atualmente estão pagando os benefícios dos aposentados e pensionistas. Contudo, o RGPS vem apresentando déficits financeiros devido a diversos fatores. Pelo lado das despesas temos fatores como o aumento da expectativa de vida concomitante com a redução da taxa de natalidade. Pelo lado das receitas temos fatores como as oscilações históricas do nível de emprego, da formalidade no mercado de trabalho e do crescimento econômico.

Algumas vertentes sociais, econômicas e políticas guardam grande expectativa de que um contínuo crescimento econômico nacional possa suprimir, parcial ou integralmente, as projeções deficitárias crescentes para o RGPS. Nesse contexto, compreender a essência empírica da arrecadação previdenciária é crucial para planejar políticas públicas, ancorar expectativas e referenciar projeções fiscais sobre o futuro da previdência social brasileira.

Uma forma de analisar o quão factível são as expectativas do crescimento econômico sobre a sustentabilidade do RGPS é mensurar a elasticidade entre ambos. A elasticidade demonstra a relação econômica entre duas variáveis. Ou seja, ela quantifica essas relações e observa os impactos que uma variável pode ter sob a outra. Tendo em vista a relevância de se compreender o modo como o nível de atividade econômica afeta a arrecadação

previdenciária, o presente estudo busca responder ao seguinte questionamento: qual a elasticidade da arrecadação previdenciária do RGPS em relação ao PIB?

A elasticidade da arrecadação previdenciária em relação ao Produto Interno Bruto (PIB), também conhecida por elasticidade-renda da arrecadação previdenciária, é uma medida que avalia como a arrecadação previdenciária no Brasil variam em resposta às mudanças no PIB. Essa medida é útil para entender a sensibilidade da arrecadação previdenciária em relação ao nível de atividade econômica. Ao se mensurar a elasticidade entre duas variáveis, calcula-se a variação proporcional de uma em relação a outra em um período. Assim, à medida que ocorre uma determinada variação percentual do PIB, a arrecadação previdenciária pode variar em uma proporção menor, igual ou maior que aquela.

O objetivo deste estudo é analisar a relação entre arrecadação previdenciária e nível de atividade econômica por meio da estimação da elasticidade das receitas previdenciárias do RGPS em relação ao PIB. Estudos sobre elasticidades são importantes para a compreensão das estruturas de mercado e seus efeitos sobre os agentes econômicos. O cálculo da elasticidade da arrecadação previdenciária em relação ao PIB é fundamental para compreender a essência empírica das receitas previdenciárias, formular políticas públicas, ancorar expectativas e referenciar projeções fiscais sobre o futuro da previdência social brasileira.

A elasticidade da arrecadação previdenciária em relação ao PIB pode ser influenciada por vários fatores, incluindo mudanças demográficas, políticas previdenciárias, taxas de contribuição, níveis de emprego e outras variáveis econômicas e sociais. Entretanto, neste estudo o foco será analisar a sensibilidade da arrecadação previdenciária em relação ao nível de atividade econômica. Não foram objeto deste estudo as receitas referentes aos RPPS dos entes federados, nem aos RPC de nenhuma instituição.

Os estudos sobre a previdência social são importantes por possibilitar a compreensão de seu funcionamento e gerar informações empíricas a fim de desenvolver políticas públicas que contribuam para a melhoria do sistema. Ao considerar as contingências econômicas que

o setor previdenciário enfrenta no Brasil, a análise da elasticidade da arrecadação previdenciária em relação ao PIB é de extrema relevância para o entendimento do impacto de fatores macroeconômicos sobre o setor previdenciário e vice-versa.

2. REFERENCIAL TEÓRICO

A elasticidade-renda da arrecadação previdenciária mede a sensibilidade ou responsividade da arrecadação previdenciária quando se varia o PIB. Em termos matemáticos, essa elasticidade é definida como sendo a razão entre a variação percentual da arrecadação previdenciária e a variação percentual do PIB. A fórmula geral para calcular essa elasticidade é dada por:

$$\varepsilon_{PIB}^{RP} = \frac{\Delta \% Receita \ Previdenci\'aria}{\Delta \% PIB} \tag{1}$$

Se a elasticidade for maior que 1 ($\varepsilon_{PIB}^{RP}>1$), isso indica que a arrecadação previdenciária é elástica em relação ao PIB, ou seja, ela varia em uma proporção maior do que a mudança percentual no PIB. Se a elasticidade for menor que 1 ($\varepsilon_{PIB}^{RP}<1$), a arrecadação previdenciária é inelástica em relação ao PIB, indicando que ela varia em uma proporção menor do que a mudança percentual no PIB. Por fim, se a elasticidade for igual a um ($\varepsilon_{PIB}^{RP}=1$), ou seja, elasticidade unitária, isso significa que a arrecadação previdenciária varia em uma proporção igual à mudança percentual do PIB.

Em estudos recentes sobre regimes previdenciários, especialistas têm ressaltado a importância de ajustes dinâmicos nas políticas previdenciárias para lidar com desafios demográficos e econômicos em constante evolução (AFONSO, CARVALHO; 2021). Ademais, destacam também a importância do parâmetro de sensibilidade da arrecadação tributária ao PIB para análises dos efeitos da política fiscal sobre o ciclo econômico (BLANCHARD e PEROTTI, 2020). Estudos como estes destacam a necessidade de uma abordagem adaptativa para assegurar a eficácia e sustentabilidade do RGPS no contexto atual brasileiro.

Marquezini (2018) apresenta uma análise empírica das elasticidades do Produto Interno Bruto (PIB) e da arrecadação previdenciária do Brasil, utilizando a metodologia de cointegração de Engle-Granger. Os resultados mostram que as variações no PIB têm um efeito significativo na arrecadação previdenciária, com uma elasticidade de curto prazo de 0,8 e uma elasticidade de longo prazo de 1,2. Além disso, as mudanças na composição do PIB, como a queda na participação da indústria e o aumento do setor de serviços, afetaram as elasticidades de longo prazo. A metodologia de cointegração de Engle-Granger mostrou-se útil para analisar a relação entre as variáveis e pode ser aplicada em outras análises econômicas.

Casalecchi e Barros (2018) elaboraram a Nota Técnica nº 19 do Instituto Fiscal Independente (IFI). Esta teve como objetivo analisar a sensibilidade da receita governamental em relação ao crescimento econômico, utilizando dados do período de 1997 a 2019. A metodologia utilizada foi a estimação por métodos de cointegração e correção de erro, que permitiu identificar uma queda na elasticidade da receita em relação ao PIB a partir de 2008. Além disso, os resultados mostram que a sensibilidade das receitas tributárias ao crescimento econômico é relativamente alta, com coeficientes entre 1,1 e 1,3. Conclui-se que a queda na elasticidade da receita impõe desafios notáveis em torno da velocidade do processo de consolidação fiscal e que muitos refinamentos das análises são possíveis e desejáveis.

Já Casalecchi e Bacciotti (2021) subscreveram a Nota Técnica № 16 do IFI. Esta tem como objetivo atualizar as estimativas sobre a variação da receita pública em resposta a variações do PIB. A metodologia utilizada foi a análise de cointegração e correção de erros, com base em dados trimestrais do período de 2000 a 2020. A elasticidade de longo prazo apurada para as receitas do RGPS foi de 1,06. Esta é a mais alta entre as medidas analisadas. Isso significa que as receitas do RGPS são mais sensíveis às variações do PIB do que as outras medidas de receita analisadas no estudo. Uma hipótese elencada para esse comportamento é que o crescimento do PIB pode vir acompanhado de aumento mais intenso da taxa de formalização no mercado de trabalho.

Em 2020, a Secretaria de Política Econômica (SPE), órgão integrante do então Ministério da Economia, publicou o estudo intitulado Elasticidade-Renda de Longo Prazo da Arrecadação Bruta dos Tributos Federais. Este objetivou calcular a elasticidade-renda de longo prazo dos tributos, individuais e agrupados, para 23 tributos. Ao estimar modelos autorregressivos e de defasagens distribuída (ARDL), os resultados obtidos mostraram que a elasticidade-renda de longo prazo encontrada para as receitas previdenciárias foi de 1,14 para o período de maio de 2019 a agosto de 2020, o que incluía essas receitas entre os tributos que demonstram ser mais sensíveis ao nível de atividade econômica.

O presente estudo contribui à literatura sobre o tema ao realizar um rigoroso procedimento de identificação da ordem de estacionariedade e de co-integração das séries analisadas, levando-se em consideração inclusive a presença de quebras estruturais.

3. METODOLOGIA

3.1 Análise de Estacionariedade

Os testes modificados de Dickey-Fuller (ADF^{GLS}) e de Phillips-Perron ($\overline{MZ}_{\alpha}^{GLS}$), propostos por Elliot, Rottemberg e Stock (1996) e Ng e Perron (2001) são aplicados com a finalidade de verificar a estacionariedade das séries de tempo. Contudo, mesmo os testes modificados ADF^{GLS} e $\overline{MZ}_{\alpha}^{GLS}$ possuem baixo poder na presença de quebras estruturais, tornando-se enviesados no sentido da não rejeição da hipótese nula de raiz unitária, mesmo quando a série é estacionária. Pesquisas posteriores adotaram um procedimento endógeno para determinar o ponto de quebra a partir dos dados.

Nesse contexto, Vogelsang e Perron (1998) desenvolveram um teste de raiz unitária com estimação do ponto de quebra de forma endógena, baseando-se nos modelos A, B e C de Perron (1989) e nos métodos Innovation Outlier (IO) e Additive Outlier (AO). O modelo AO permite uma mudança súbita na média (crash model), enquanto o modelo IO permite mudanças mais graduais. Assim, os dois modelos são usados para verificar a hipótese de

estacionariedade: quebra no intercepto, quebra no intercepto e na tendência, ambas em nível e em primeira diferença.

Por sua vez, Saikkonen e Lütkepohl (2002) e Lanne, Saikkonen e Lütkepohl (2002, 2003) propõem que as quebras estruturais podem ocorrer ao longo de um número de períodos e expõe uma transição suave para um novo nível. Portanto, uma função de mudança de nível é acrescentada ao termo determinístico do processo gerador de dados. Os termos determinísticos são extraídos por mínimos quadrados generalizados (GLS) e, em seguida, aplica-se um teste ADF às séries ajustadas. Valores críticos do teste encontram-se tabulados por Lanne, Saikkonen e Lütkepohl (2002).

3.2 Análise de Co-integração

A análise de co-integração das séries analisadas nesse estudo é feita a partir da implementação de três testes distintos.

O primeiro teste aplicado no estudo é o teste Engle-Granger aumentado. O teste de Engle-Granger e o teste de Engle-Granger aumentado são aplicados da seguinte forma. Em primeiro lugar, estima-se uma regressão econométrica estática, e obtém-se os termos de erros residuais. Em seguida, aplica-se o teste de raiz unitária de Dickey-Fuller na série temporal do termo de erro residual. É feito o teste de raiz unitária nos resíduos estimados usando o procedimento ADF:

$$\Delta \hat{\varepsilon}_t = \alpha \hat{\varepsilon}_{t-1} + \sum_{i=1}^{p-1} \lambda_{i+1} \Delta \hat{\varepsilon}_{t-i} + u_t$$
(2)

A não rejeição de H_0 : $\alpha=0$ implica que os resíduos têm raiz unitária, de modo que as variáveis não co-integram. Se a hipótese nula for rejeitada, esses resíduos poderão ser usados para estimar o modelo de correção de erros. É preciso, no entanto, uma precaução. Como os $\hat{\varepsilon}_t$ estimados se baseiam no parâmetro co-integrante estimado $\hat{\beta}_2$, os valores críticos de

significância de DF e ADF não são apropriados. Engle e Granger (1987) calcularam esses valores críticos.

A limitação do Teste de Engle-Granger é clara: o modelo verdadeiro deve ter apenas uma relação co-integrante (SANTOS, 2017, p. 184). Em vista disso, outras duas abordagens econométricas são utilizadas visando analisar a relação de co-integração entre as séries analisadas, mas desta vez por meio de uma abordagem multivariada.

O segundo teste aplicado é o teste de Co-integração de Johansen (JOHANSEN; JUSELIUS, 1990; JOHANSEN, 1995). Este contempla duas formas de obtenção dos autovalores, que são denominados de Teste do Traço e Teste do Máximo Autovalor, cujas estatísticas encontram-se a seguir descritas:

$$\lambda_{traço}(r) = -T \sum_{i=r+1}^{n} ln(1-\hat{\lambda}_i), H_0: r \le r_0$$
(3)

$$\lambda_{max}(r, r+1) = -T \ln(1 - \hat{\lambda}_{i=r_0+1}), H_0: r = r_0$$
(4)

onde: $\hat{\lambda}_i =$ os valores estimados das raízes características (os autovalores) obtidos da matriz π estimada, sendo organizados em ordem decrescente: $\hat{\lambda}_1 > \hat{\lambda}_2 > \dots > \hat{\lambda}_k$. A regra básica é que grandes valores da estatística de teste conduzem à rejeição da hipótese nula. T = o número de observações usáveis. Quando os valores apropriados de r são claros, essas estatísticas são simplesmente referidos como λ_{traco} e λ_{max} .

No **Teste do Traço**, testa-se a hipótese nula da existência de r^* vetores de cointegração ($r = r^*$), contra a hipótese alternativa de que $r > r^*$ vetores de cointegração. Quando não houver cointegração, os autovalores encontrados serão próximos de zero, indicando a não estacionariedade e a instabilidade da matriz π , não se podendo rejeitar a hipótese nula. Há indícios de mais de um vetor de cointegração quando rejeitada a hipótese nula de que $r = r^*$.

A segunda forma de se obter os autovalores de π é através do **Teste de Máximo Autovalor**, no qual a hipótese nula implica na existência de $r = r^*$ vetores de cointegração,

contra a hipótese alternativa de que $r^* + 1 = r$ vetores de cointegração. O Teste de Máximo Autovalor tem como principal função verificar o máximo autovalor significativo que um vetor de cointegração produz. Assim como no Teste do Traço, ao rejeitar-se a hipótese nula, tem como interpretação a existência de mais de um vetor de cointegração.

O terceiro teste aplicado é o teste de Co-integração de Johansen com quebra estrutural. Johansen *et al.* (2000) demonstra como a tradicional análise de cointegração pode ser usada para identificar possíveis tipos de quebras estruturais. O autor propôs uma generalização do modelo de quebra na tendência e intercepto, modelo C, de Perron (1989), no contexto de séries temporais multivariadas. O autor mostra como a análise tradicional de cointegração pode ser usada para identificar alguns tipos de quebra estrutural, embora existam algumas diferenças conceituais como a necessidade de gerar uma nova tabela de resultados assintóticos.

Demonstra-se que a partir desse aparato teórico é possível identificar e testar mudanças na tendência presente nos vetores de cointegração. Contudo, para usar esse tipo de análise tradicional, segundo o autor é necessário excluir as observações posteriores à quebra (previamente conhecida), através de *dummies* de impulso. O número de *dummies* corresponde ao número de defasagens do sistema e a inclusão dessas *dummies* implica na redução da amostra.

3.3 Análise Multivariada

O Modelo Vetorial Autorregressivo com Mecanismo de Correção de Erros (VECM) corrige o problema de omissão de variáveis relevantes que se incorre quando se utilizar o Modelo Vetorial Autorregressivo (VAR) com variáveis em primeiras diferenças, apesar de incorrer no problema de omissão de defasagens relevantes ao impor o mesmo número de defasagens para todas as variáveis no sistema em modelagem. Em resumo, o modelo VECM é uma re-parametrização do modelo VAR.

A principal vantagem de escrever o sistema de equações pelo modelo VECM está relacionada à incorporação de informações tanto de curto quanto de longo prazo. Outra vantagem de se trabalhar com variáveis co-integradas é a possibilidade da estimação das elasticidades de longo prazo entre elas. Especificamente na equação co-integrante, como o

vetor é normalizado, o primeiro coeficiente será sempre igual a 1. Os demais coeficientes representam a elasticidade dessas variáveis com relação à primeira, lembrando que o sinal negativo indica uma elasticidade positiva. Além disso, a estimação de um modelo VECM permite explorar três técnicas adicionais.

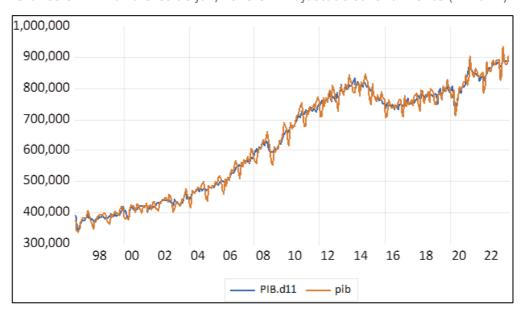
Primeiro, O conceito de causalidade no sentido de Granger está associado à ideia de precedência temporal entre variáveis. Assim, se y_t contém informação passada que ajuda na previsão de x_t , e, se essa informação não está contida em outras séries usadas no modelo, então y_t Granger-causa x_t (Granger, 1969).

Segundo, utiliza-se a função de impulso-resposta generalizada (FIRG). Ressalta-se que o principal argumento para este procedimento é que o impulso-resposta generalizado não varia se houver reordenação de variáveis no VAR. Em linhas gerais, deve-se observar que, em um modelo VECM, as funções de impulso-resposta tendem a se anular com o tempo, ou seja, isto significa dizer que as variáveis endógenas tenderiam para uma trajetória de equilíbrio de longo prazo. Logo, as funções de impulso-resposta podem ser analisadas como uma sucessão de decorrências ou respostas sobre determinada variável, causados por desvios de seu equilíbrio inicial em relação a outra variável.

Terceiro, a análise de decomposição de variância (ADV) consiste em um instrumento utilizado para descrever a dinâmica do sistema na abordagem VAR. Por este método, é possível identificar a proporção da variação total de uma variável devida a cada choque individual nas k variáveis componentes do modelo. Ressalta-se que a ADV fornece informações sobre a importância relativa de cada inovação sobre as variáveis do sistema (ENDERS, 2015, p. 302).

4. DESCRIÇÃO DAS VARIÁVEIS E TRATAMENTO DOS DADOS

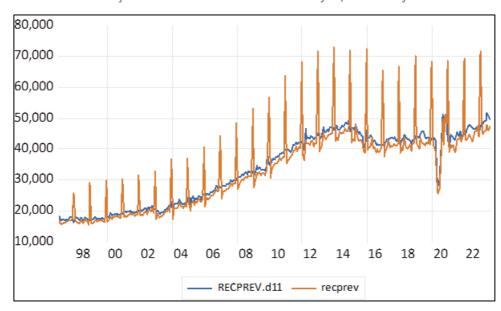
No presente estudo foram utilizados dados mensais do Produto Interno Bruto (PIB) brasileiro e da arrecadação líquida destinada ao Regime Geral da Previdência Social (RGPS), abrangendo o período de janeiro de 1997 a julho de 2023.


A série temporal da estimativa mensal de PIB foi extraída do Sistema Gerenciador de Séries Temporais (SGS), gerido pelo Banco Central do Brasil (BC), sendo obtida a partir dos dados oficiais de PIB, nas frequências trimestral e anual, divulgados pelo Instituto Brasileiro de Geografia e Estatística (IBGE).

Já os dados da arrecadação líquida destinada ao RGPS foram extraídos do Boletim Resultado do Tesouro Nacional (RTN) de julho de 2023. Este é elaborado e publicado pela Secretaria do Tesouro Nacional (STN), órgão do Ministério da Fazenda.

Ambas as séries temporais foram convertidas em termos reais usando a série histórica do IPCA e, em seguida, convertidas em termos de logaritmos naturais, a fim de que os coeficientes estimados possam ser interpretados como elasticidades.

Os dados foram ajustados sazonalmente pelo método Census X-13. Este é baseado no modelo ARIMA (Autoregressive Integrated Moving Average), que é um modelo estatístico que descreve a relação entre os valores de uma série temporal e seus valores anteriores. O modelo X-13 estende o modelo ARIMA para incluir componentes sazonais. O método Census X-13 é um método não paramétrico, o que significa que não assume nenhum formato específico para a série temporal. Isso o torna um método versátil que pode ser usado para ajustar uma ampla variedade de séries temporais quanto a sazonalidade.


Gráfico 01: PIB a valores de jul./2023 e PIB ajustado sazonalmente (PIB.d11).

R\$ em milhões de reais. Período de 01/1997 a 07/2023.

Fonte: Elaborado pelo autor a partir de dados do Banco Central do Brasil.

Gráfico 02: Arrecadação Previdenciária a valores de jul./2023 e ajustada sazonalmente.

R\$ em milhões de reais. Período de 01/1997 a 07/2023.

Fonte: Elaborado pelo autor a partir de dados da Secretaria do Tesouro Nacional.

5. ANÁLISE DOS RESULTADOS

5.1 Análise de Estacionariedade

Foram realizados testes de raiz unitária do logaritmo natural das séries temporais em estudo. O objetivo dos testes de raiz unitária é determinar se uma série temporal é estacionária ou não. Uma série temporal é dita estacionária se sua média, variância e autocorrelação não mudam ao longo do tempo. A presença de uma raiz unitária pode causar problemas na inferência estatística, pois pode levar a estimativas enviesadas e ineficientes.

Dessa forma, aplicou-se testes de estacionariedade tanto lineares quanto com quebras estruturais. Os resultados dos testes de raiz unitária foram consolidados na Tabela 1 abaixo. Nesta, a variável y_t^{sa} é o logaritmo natural do PIB mensal, em termos reais e ajustado sazonalmente. Já a variável τ_t^{sa} é o logaritmo natural da arrecadação previdenciária em termos reais e ajustada sazonalmente.

A análise dos resultados dos testes sem quebra estrutural expressa que tanto a série temporal do PIB brasileiro quanto a da arrecadação previdenciária são não estacionárias em nível e em primeiras diferenças. Os valores encontrados nas estatísticas de teste são menos negativos que os valores críticos correspondentes. Assim, não rejeitamos a hipótese nula (H_0) de que $\delta=0$ e concluímos que as séries temporais testadas são não-estacionárias.

Os resultados dos testes com quebra estrutural demonstram que tanto a série temporal do PIB brasileiro quanto a da arrecadação previdenciária são não estacionárias em nível, porém são estacionárias em primeiras diferenças. Note que para o PIB em primeira diferença (Δy_t^{sa}), ambos os testes indicam que os coeficientes estimados são estatisticamente significantes ou rejeição da hipótese nula ao nível de significância estatística de 1%.

Já para a arrecadação previdenciária em primeira diferença ($\Delta \tau_t^{sa}$), o teste de Vogelsang e Perron (1998) indica que os coeficientes estimados são estatisticamente significantes ou rejeição da hipótese nula ao nível de significância estatística de 1%. Já o teste de Saikkonen-Lütkepohl (2002) indica que coeficientes estimados são estatisticamente

significantes ou rejeição da hipótese nula ao nível de significância estatística de 5% para o modelo com constante e tendência determinística.

As datas de quebras estruturais selecionadas referem-se aos seguintes períodos: (i) 1997: Ocorreu a "crise econômica asiática", com a desvalorização do baht tailandês. A crise se espalhou para outros países da Ásia, como Indonésia, Coréia do Sul e Malásia; (ii) 1998: desvalorização do Real e dos preços das commodities influenciados por uma forte crise financeira na Rússia; (iii) 2009: A "crise do subprime" ou crise da bolha imobiliária nos EUA iniciou em 2008 e espalhou globalmente em 2009; (iv) 2014 e 2015: período de recessão na economia brasileira; (vi) 2020: crise sanitária provocada pela pandemia de Covid-19.

Tabela 1 – Resultado dos testes de raízes unitárias (1997 a 2023).

	Sem quebra estrutural				Com	om quebra estrutural endógena (data da quebra é desconhecida)				
Variáveis	Modelo				Vogelsa	ng e Perron (:	1998)	Saikkonen e Lütkepohl (2002)		
variaveis	ivioueio	ADF^{GLS}	\overline{MZ}_{t}^{GLS}	Lags	Tipo de	Data da	Estatística	Tipo de	Data da	Estatística
					Modelo	Quebra	de Teste	Modelo	Quebra	de Teste
y_t^{sa}	С	1,83	2,01	6	Inovational Outlier	2014:12	-4,04 (12 lags)	Rational shift	2020:04	-1,66 (2 lags)
y_t^{sa}	C,T	-1,29	-1,21	6	Inovational Outlier	2009:05	-3,60 (6 <i>lags</i>)	Rational shift	2020:04	-1,17 (2 lags)
Δy_t^{sa}	С	-0,16	0,89	16	Inovational Outlier	1998:02	-21,68 (0 lags) ^(a)	Rational shift	2020:05	-4,15 (2 lags) ^(a)
Δy_t^{sa}	C,T	-2,23	0,07	16	Inovational Outlier	1997:06	-22,77 (0 lags) ^(a)	Rational shift	2020:05	-4,60 (2 lags) ^(a)
$ au_t^{sa}$	С	1,56	1,64	6	Inovational Outlier	2015:04	-3,58 (12 lags)	Rational shift	2020:07	-1,67 (2 lags)
$ au_t^{sa}$	C,T	-1,23	-1,18	6	Inovational Outlier	2009:10	-3,58 (6 <i>lags</i>)	Rational shift	2020:07	-0,96 (2 <i>lags</i>)
Δau_t^{sa}	С	-0,42	-0,34	16	Inovational Outlier	1997:12	-21,99 (0 <i>lags</i>) ^(a)	Rational shift	2020:06	-2,34 (2 lags)
Δau_t^{sa}	C,T	-1,64	-0,24	16	Inovational Outlier	1997:12	-21,98 (0 lags) ^(a)	Rational shift	2020:06	-3,50 (2 lags) ^(b)

Fonte: elaboração própria. Uso dos softwares econométricos Eviews e JMULTI.

Nota:

1 – "Lags" significa defasagens. Tipos de modelo: "C" significa constante; "T" significa tendência determinística. Contagem inicial máxima de 16 defasagens. Δ é o operador em primeiras diferenças. Note que (a), (b) e (c) indicam que os coeficientes estimados são estatisticamente significantes ou rejeição da hipótese nula ao nível de significância estatística de 1%, 5% e 10%, respectivamente. Observações mensais incluídas: 319 (amostra: 1997 a 2023).

2 – Os valores críticos do teste ADF^{GLS} são (Elliot, Rothenberg e Stock, 1996): (i) modelo com constante: -2,57 (1%), -1,94 (5%) e -1,62 (10%). (ii) modelo com constante e tendência determinística: -3,47 (1%), -2,91 (5%) e -2,60 (10%). Seleção do número ótimo de defasagens por meio do critério de informação de Akaike modificado.

3 – Os valores críticos assintóticos do teste $\overline{MZ}_{\alpha}^{GLS}$ são (Ng e Perron, 2001, Tabela 1): (i) modelo com constante: -2,58 (1%), -1,98(5%) e -1,62 (10%); (ii) modelo com constante e tendência determinística: -3,42 (1%), -2,91 (5%) e -2,62 (10%). Método de estimação espectral: AR GLS-detrented. Seleção do número ótimo de defasagens por meio do critério de informação de Akaike modificado.

4 – Os valores críticos do teste de Vogelsang e Perron (1998) são: (i) modelo com constante e tendência determinística/quebra de intercepto: -5,35 (1%), -4,86 (5%), e -4,61 (10%); (ii) modelo com constante e tendência determinística/quebra de intercepto e de tendência: -5,72 (1%), -5,17 (5%), e -4,89 (10%). (iii) modelo com constante e tendência determinística/quebra de tendência: -5,06 (1%), -4,52 (5%), e -4,26 (10%). Tipos de quebra: innovational outlier e additive outlier. Seleção da quebra estrutural: estatística t de Dickey-Fuller minimizada. Seleção do número ótimo de defasagens: Critério de Informação de Schwarz.

5 – Os valores críticos do teste de Saikkonen-Lütkepohl são (Lanne *et al.*, 2002): (i) modelo com constante: -3,48 (1%), -2,88 (5%), e -2,58 (10%); (ii) modelo com constante e tendência determinística: -3,55 (1%), -3,03 (5%), e -2,76 (10%). Tipos de quebra estrutural: *Rational Shift, Exponential Shift e Impulse dummy*.

5.2 Análise de Co-integração

Posteriormente foram realizados testes de cointegração nas séries temporais em estudo. Estes são utilizados em econometria para verificar se existe uma relação de equilíbrio de longo prazo entre duas ou mais variáveis. A cointegração é uma propriedade importante de séries temporais econômicas, pois permite que modelos econométricos mais sofisticados sejam estimados. Por exemplo, modelos de correção de erro (MCE) são baseados na premissa de que as séries temporais co-integradas tendem a retornar a seu equilíbrio de longo prazo após serem perturbadas. Assim, foram efetuados três testes de cointegração: o teste de Engle-Granger; o teste de Johansen e o teste de Johansen com quebra estrutural.

Os resultados dos testes de cointegração foram consolidados nas Tabelas 2, 3 e 4 a seguir. Em relação ao Teste de Cointegração de Engle-Granger, cujos resultados encontramse reportados na Tabela 2, observa-se ausência de co-integração das séries aqui analisadas.

Tabela 2 – Resultado do teste de Cointegração de Engle-Granger.

Dependente	tau- <i>statistic</i>	Prob.*	z-statistic	Prob.*
y_t^{sa}	-1,991485	0,5333	-10,84692	0,3104
$ au_t^{sa}$	-2,049882	0,5028	-11,31108	0,2862

Nota: (*) significa valores-p definidos em MacKinnon (1996).

Entretanto, em face das limitações do Teste de Engle-Granger, procedeu-se à aplicação do Teste de Co-integração de Johansen, conforme descrito na Tabela 3. Os resultados do Teste do Traço e do Teste do Autovalor Máximo indicam a existência de uma equação de co-integração ao nível de significância estatística de 1%.

Tabela 3 – Resultado do Teste de Cointegração de Johansen

H_0	H_1	Autovalores	Estatística	Valores Críticos	Valor-p		
	Teste do Traço				_		
r = 0 Nenhum	$r \ge 0$	0,096948	33,88452 ^(a)	15,49471	0,0000		
$r \leq 1$ No máximo 1	$r \ge 1$	0,005920	1,864392	3,841465	0,1721		
	Teste do Autovalor Máximo						
$r = 0 \text{ Nenhum}^{(a)}$	r = 0	0,096948	32,02012 ^(a)	14,26460	0,0000		

$r \leq 1$ No máximo 1	r = 1	0,005920	1,864392	3,841465	0,1721		
Motor							

- 1 Note que (a), (b) e (c) indicam que os coeficientes estimados são estatisticamente significantes ou rejeição da hipótese nula ao nível de significância estatística de 1%, 5% e 10%, respectivamente;
 - 2 O Teste do Traço e o Teste do Autovalor Máximo indicam uma equação de co-integração ao nível de significância de 1%.
 - 3 Valores-p obtidos em MacKinnon-Haug-Michelis (1999).

Mas a análise de co-integração precisa levar em consideração as quebras estruturais que foram identificadas no procedimento anterior de análise de estacionariedade. Em vista disso, ao aplicar o Teste de Co-integração de Johansen, em presença de quebra estruturais, os resultados confirmaram novamente que as séries co-integram, conforme reportado na Tabela 4. Os resultados do teste indicam que a hipótese nula de não cointegração é rejeitada para 1 (uma) relação de cointegração. O valor da estatística Traço é 122,13, com p-valor de 0,000. Portanto, com base nos resultados do teste, pode-se concluir que existe 1 relação de cointegração entre as séries temporais. Essa relação significa que, no longo prazo, as duas variáveis tendem a se mover juntas.

Tabela 4 – Resultado do teste de Cointegração de Johansen – Com Quebra Estrutural.

R0	LR	Valor-p	90%	95%	99%
0	122,13 ^(a)	0,0000	33,31	36,34	42,48
1	8,86	0,5553	16,13	18,46	23,38

Nota:

- 1 Note que (a), (b) e (c) indicam que os coeficientes estimados são estatisticamente significantes ou rejeição da hipótese nula ao nível de significância estatística de 1%, 5% e 10%, respectivamente.
 - 2 Quebras em nível e na tendência, conjuntamente. 1º Quebra: 1997M12; 2º Quebra: 2020M05.

Em resumo, os testes de co-integração de Johansen (sem e com quebra estrutural) implementados demonstram, conjuntamente, a existência de cointegração entre as séries temporais analisadas.

5.3 Estimação do Modelo VECM

Para apurar a elasticidade-renda da arrecadação previdenciária, estimou-se o modelo VECM com uma defasagem. A Tabela 5 a seguir reporta os resultados da estimação do vetor de co-integração:

Tabela 5 – Vetor de Co-integração

Equação Co-integrante	Arrecadação Previdenciária (au^{sa}_{t-1})	$PIB(y^{sa}_{t-1})$	Constante
Coeficiente	1,000000	-1,278737	6,666028
Erro-Padrão		(0,02039)	
Estatística-t		[-62,7265] ^(a)	

Nota: (a), (b) e (c) indicam que os coeficientes estimados são estatisticamente significantes ou rejeição da hipótese nula ao nível de significância estatística de 1%, 5% e 10%, respectivamente.

A equação de co-integração que aborda a relação entre arrecadação previdenciária e PIB pode ser escrita da seguinte forma no período t:

$$\tau_t^{sa} = -6,666028 + 1,278737 y_t^{sa} \tag{5}$$

Na equação (15), percebe-se que, no longo prazo, o aumento de 1% do PIB impacta em um aumento de 1,27% na arrecadação da receita previdenciária. Ou seja, constatou-se a hipótese 1 da pesquisa que estimava que a arrecadação previdenciária é elástica em relação ao PIB. Constata-se assim que, para o longo prazo, a arrecadação previdenciária varia em uma proporção maior à variação do PIB para o período analisado.

A Tabela 6 a seguir compara o resultado da elasticidade-renda da arrecadação previdenciária obtida neste estudo em relação aos resultados obtidos nos estudos anteriores. Observa-se que, ao aplicar um procedimento econométrico mais rigoroso e robusto, encontra-se evidências de que a arrecadação previdenciária é elástica em relação ao nível de atividade econômica, em comparação aos outros resultados obtidos na literatura

especializada, os quais apontaram para uma elasticidade-renda da arrecadação previdenciária unitária.

Diversos fatores podem explicar esse resultado. Mas sabe-se que a arrecadação previdenciária depende crucialmente da massa salarial da economia. Entre os anos de 2017 e 2022, entretanto, constatou-se uma intensificação do processo de reformas estruturais e microeconômicas para estimular o crescimento econômico sustentável. Dentre essas reformas, destacam-se a reforma trabalhista e as reformas microeconômicas para a melhoria do ambiente de negócios. Assim, provavelmente, essa elasticidade positiva pode estar refletindo os efeitos dessas reformas no mercado de trabalho.

Tabela 6 – Comparativo das Elasticidades-renda de longo prazo da arrecadação previdenciária.

Estudos	Marquezini SPE (2020)		Casalecchi e Bacciotti (2021)	Este Estudo (2023)
Elasticidade de Longo Prazo	1,13	1,14	1,06	1,28

O teste de causalidade de Granger é um teste de hipótese simples que verifica se a inclusão de uma variável na equação de regressão de outra variável melhora o ajuste da regressão. Em outras palavras, o teste de causalidade de Granger verifica se o passado de uma variável pode ajudar a prever o futuro de outra variável. São duas formas de mensurar as fontes de causalidade de Granger em um modelo VECM: (i) coeficientes dos valores defasados e diferenciados das séries analisadas (causalidade de curto prazo); (ii) coeficiente do termo de correção de erros (causalidade de longo prazo).

Os resultados apurados para a causalidade de Granger no curto prazo estão consolidados conforme Tabela 7, os quais mostram que a arrecadação previdenciária Granger-causam unidirecionalmente o PIB ao nível de significância de 10%.

Tabela 7 – Resultado do Teste de Causalidade de Granger/Bloco Exogeneidade no VECM

Hipótese Nula	Estatística de Teste	Graus de Liberdade	Direção da Causalidade
y_{t-1}^{sa} não Granger-causa $ au_{t-1}^{sa}$	0,126180 (0,7224)	1	$y_{t-1}^{sa} \not\rightarrow \tau_{t-1}^{sa}$
$ au_{t-1}^{\mathit{Sa}}$ não Granger-causa y_{t-1}^{Sa}	2,820493 ^(c) (0,0931)	1	$\tau_{t-1}^{sa} \to y_{t-1}^{sa}$

Nota: (a), (b) e (c) indicam que os coeficientes estimados são estatisticamente significantes ou rejeição da hipótese nula ao nível de significância estatística de 1%, 5% e 10%, respectivamente.

Em relação à segunda fonte de causalidade de Granger, que é relacionada ao longo prazo, em um modelo de correção de erros, o mais apropriado para avaliar o grau de exogeneidade entre as variáveis dependentes e, assim, a relação de causalidade entre elas, é trabalhar com os conceitos de exogeneidade fraca e forte, definidos em Engle, Hendry e Richard (1983) e Ericsson (1994). A exogeneidade fraca em sistemas co-integrados corresponde a certas "zero restrições" sobre a matriz de parâmetros de ajustamento α , podendo, assim, ser testada. Por exemplo, a hipótese de exogeneidade fraca de uma variável xt para a matriz de vetores de cointegração β não é válida se um dos vetores de cointegração aparece em ambos os modelos, condicional e marginal. Quando os coeficientes da matriz α são zeros, a variável explicada é dita fracamente exógena. Assim, é preciso reinterpretar a condição de causalidade em sistemas co-integrados. Em um sistema co-integrado, $\{y_t\}$ não Granger causa $\{x_t\}$ se os valores defasados Δy_{t-i} não explicam Δx_t , e x_t não responde aos desvios de equilíbrio de longo prazo. Portanto, x_t é fracamente exógena.

Os resultados reportados nas Tabelas 8 e 9 a seguir confirmam a existência de relação de bi-causalidade de Granger de longo prazo nesse sistema bivariado a partir da verificação da significância estatística das velocidades de ajustamento das relações de equilíbrio.

Tabela 8 – Teste de restrição sobre a velocidade de ajustamento das *r* relações de equilíbrio relativas à equação da receita previdenciária.

Equação Cointegrante	CointEq1
$ au_{t-1}^{sa}$	-25.63904
y_{t-1}^{sa}	34.40113
	-192 4210

Estatística Qui-Quadrado 21,63016^(a)

Valor-p

0.000003

Nota: (a), (b) e (c) indicam que os coeficientes estimados são estatisticamente significantes ou rejeição da hipótese nula ao nível de significância estatística de 1%, 5% e 10%, respectivamente.

Tabela 9 – Teste de restrição sobre a velocidade de ajustamento das *r* relações de equilíbrio relativas à equação do Produto Interno Bruto

Equação Coíntegrante	CointEq1
$ au_{t-1}^{sa}$	-26.64546
y_{t-1}^{sa}	33.50008
	-169 9972

Estatística Qui-Quadrado 5,477077^(a)

Valor-p

0.019267

Nota: (a), (b) e (c) indicam que os coeficientes estimados são estatisticamente significantes ou rejeição da hipótese nula ao nível de significância estatística de 1%, 5% e 10%, respectivamente.

Por fim, como o Teste de Causalidade de Granger é sensível ao número de defasagens, na Tabela 10 a seguir esse teste é implementado apenas no par das variáveis em primeiras diferenças, considerando as defasagens de 1 a 5, e os resultados obtidos, os quais são mais intuitivos sob o aspecto econômico, mostram que o PIB Granger-causa a receite previdenciárias ao nível de significância de 1%, divergindo, portanto, dos resultados reportados na Tabela 7.

Tabela 10 – Resultado do Teste de Causalidade Emparelhado

Hipótese Nula	Estatística do	Direção da				
Hipotese Nuia	1 lag	2 lags	3 lags	4 lags	5 lags	Causalidade
Δau_{t-1}^{sa} não Granger-	1,89986	0,58931	0,89865	0,80123	0,73865	Λ-Sa (Λ. Sa
causa Δy_{t-1}^{sa}	(0,1691)	(0,5553)	(0,4422)	(0,5252)	(0,5950)	$\Delta \tau_{t-1}^{sa} \not\rightarrow \Delta y_{t-1}^{sa}$
Δy_{t-1}^{sa} não Granger-	20,5670 ^(a)	12,6991 ^(a)	9,29340 ^(a)	7,77562 ^(a)	8,03395 ^(a)	Λ ₂ , Sα
causa $\Delta \tau_{t-1}^{sa}$	(8e ⁻⁰⁶)	(5e ⁻⁰⁶)	$(7e^{-06})$	(6e ⁻⁰⁶)	(4e ⁻⁰⁷)	$\Delta y_{t-1}^{sa} \to \Delta \tau_{t-1}^{sa}$

Nota: (a), (b) e (c) indicam que os coeficientes estimados são estatisticamente significantes ou rejeição da hipótese nula ao nível de significância estatística de 1%, 5% e 10%, respectivamente.

Portanto, enquanto os resultados das Tabelas 8 e 9 apontam uma relação de bicausalidade de Granger entre as variáveis no longo prazo, a Tabela 10 aponta uma relação de causalidade de Granger unidirecional do PIB para a receita previdenciária no curto prazo.

A função de impulso-resposta mostra como uma variável se comporta após um choque em outra variável do sistema. Esse choque pode ser causado por qualquer variável do sistema, incluindo a própria variável que está sendo analisada. Os resultados da função de resposta a impulso permitem avaliar como o choque afetará a variável no curto e no longo prazo.

Em um contexto de modelagem de vetores autorregressivos – VAR, é importante verificar como uma variável responde a um choque em outra variável, assumindo que todas as outras variáveis permanecem constantes. Essa análise permite verificar se o choque tem um efeito positivo ou negativo sobre a variável resposta.

Para os gráficos constantes da Figura 1, depreende-se que choques nas receitas previdenciárias sobre o PIB ou sobre elas mesmas apresentam um decréscimo com posterior tendencia de estabilidade. A mesma observação é feita quando há um choque no PIB sobre ele mesmo. Porém, chama a atenção a resposta de um choque sobre a série temporal do PIB sobre as receitas previdenciárias. O gráfico constante no quadrante direito superior da Figura 1 demonstra uma ascensão da variável receitas previdenciárias iniciadas no segundo período após o choque e que permanece observável mesmo após dez períodos.

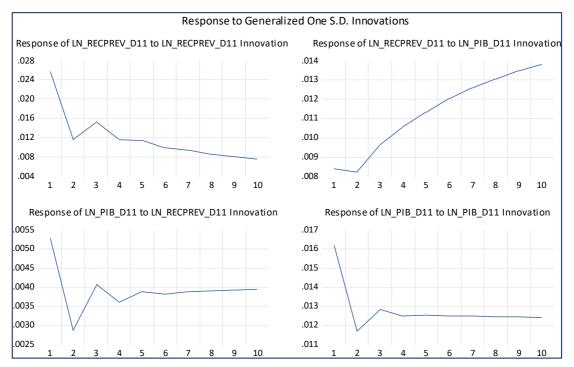


Figura 1 – Funções de Impulso-Resposta Generalizada

A decomposição da variância do erro de previsão é outra ferramenta que pode ser usada para interpretar os resultados de modelos VAR. Ela fornece informações sobre o quanto a variação de uma variável pode ser explicada por seus próprios valores passados e por outras variáveis. Essa ferramenta é útil para avaliar a importância relativa dos choques internos e externos para uma variável.

A análise das tabelas 11 e 12 demonstram os valores da decomposição da variância do erro de previsão para as variáveis receitas previdenciárias do RGPS e PIB. Os resultados demonstram a proporção da variação total de cada variável devido a um choque individual. Por isso a soma dos valores obtidos para as colunas (RecPrev) e (PIB) para um dado período é 100%. Os resultados remetem aos gráficos constantes na Figura 1.

Conforme Tabela 11, após dez períodos (meses) da ocorrência de um choque nas receitas previdenciárias, cerca de 69,33% do comportamento desta variável decorre dela mesma e aproximadamente 30,66% decorrem do PIB. Conforme Tabela 12, após dez

períodos (meses) da ocorrência de um choque no PIB, 90,52% do comportamento desta variável decorre dela mesma e, de modo complementar, aproximadamente 9,48% decorre das receitas previdenciárias do RGPS.

Tabela 11 – Decomposição da Variância dos Erros de Previsão de $au_t^{ extsf{S}a}$

Período	S.E.	$ au_t^{sa}$	y_t^{sa}
1	0,025783	100,0000	0,000000
2	0,028649	97,30690	2,693101
3	0,032832	95,69850	4,301498
4	0,035548	92,23590	7,764104
5	0,038199	88,81557	11,18443
6	0,040567	84,84720	15,15280
7	0,042844	80,87402	19,12598
8	0,045032	76,87642	23,12358
9	0,047165	73,01841	26,98159
10	0,049253	69,33574	30,66426

Tabela **12** – Decomposição da Variância dos Erros de Previsão de y_t^{sa} .

Período	S.E.	$ au_t^{sa}$	\mathcal{Y}^{sa}_t
1	0,016181	10,65643	89,34357
2	0,019981	9,062574	90,93743
3	0,023754	9,351890	90,64811
4	0,026841	9,138954	90,86105
5	0,029627	9,218280	90,78172
6	0,032156	9,236977	90,76302
7	0,034493	9,301554	90,69845
8	0,036676	9,358271	90,64173
9	0,038731	9,420913	90,57909
10	0,040678	9,480430	90,51957

A interpretação dos dados obtidos da decomposição da variância do erro de previsão pode ser complementada pela análise gráfica resultante da utilização do método de Cholesky, conforme obtido na Figura 2 abaixo. O método de Cholesky é um método eficiente para decompor matrizes simétricas positivas definidas. Ele é frequentemente usado em aplicações onde é necessário resolver sistemas lineares, estimar modelos econométricos ou analisar séries temporais.

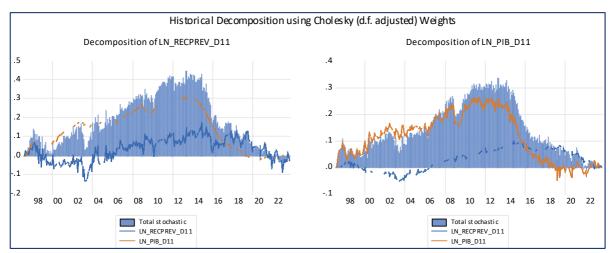


Figura 2 – Decomposição Histórica usando o método ponderado de Cholesky.

Os gráficos demonstram a decomposição do logaritmo natural das séries temporais ajustadas sazonalmente das variáveis arrecadação previdenciária e PIB, respectivamente. As barras em azul demonstram o total do componente estocástico (aleatório), cujo valor para cada período é a soma da participação de cada uma das duas variáveis analisadas. O gráfico de decomposição de cada uma das variáveis em estudo permite compreender o comportamento do componente estocástico em conjunto os componentes tendencial e cíclico, bem como visualizar as proporções/ponderações de cada série temporal no total estocástico.

6. Considerações Finais e Implicações de Política

O presente estudo teve como objetivo mensurar a elasticidade da arrecadação previdenciária vinculada ao RGPS em relação ao PIB. Após a devida apuração das séries temporais e testes econométricos, encontrou-se uma elasticidade de 1,278. Esse resultado remete a uma relação elástica da arrecadação previdenciária ao PIB. Isso significa dizer que, para o longo prazo, um aumento do PIB remete a um aumento proporcionalmente maior nas receitas vinculadas ao RGPS.

A análise da elasticidade da arrecadação do RGPS em relação ao PIB tem implicações importantes para a política fiscal brasileira, pois indica como a arrecadação previdenciária varia em relação ao crescimento da economia. Num contexto de busca da sustentabilidade financeira do sistema de previdência social, um crescimento econômico de longo prazo pode contribuir através do aumento da arrecadação previdenciária. Ao entender empiricamente como essas duas fundamentais variáveis econômicas (PIB e arrecadação previdenciária) se relacionam, abre-se caminho para estudos futuros buscarem a interpretação sobre o porquê elas possuem essa natureza de correlação.

Algumas hipóteses para que a arrecadação previdenciária seja elástica ao PIB são: (i) com o crescimento econômico, há uma tendência de maior participação dos salários no total do PIB; (ii) a redução da informalidade no mercado de trabalho aumenta a quantidade de contribuintes; (iii) o crescimento econômico advindo de um aumento da produtividade eleva o montante pago pelos contribuintes.

Mesmo considerando as diferenças metodológicas e de período, um relevante aspecto observado foi que a elasticidade apurada no presente estudo foi superior àquelas apuradas em estudos anteriores. O Brasil passou por uma reforma trabalhista (BRASIL, 2017) com o objetivo de desburocratizar as contratações de mão de obra e assim, fomentar a geração de empregos formais. No Brasil, a adesão a um regime previdenciário público é compulsória para os trabalhadores formais. Nesse contexto, há uma relação jurídica com implicações econômicas entre nível de empregos e arrecadação previdenciária. Abre-se caminho para apurar empiricamente a relação entre os níveis de emprego e de atividade econômica. Sugere-se ainda tal estudo possa apurar o impacto da reforma trabalhista ocorrida em 2017 sobre as receitas previdenciárias atinentes ao RGPS.

Por fim, o presente estudo contribui com a literatura ao promover uma avaliação atual da arrecadação previdenciária, especialmente após a reforma da previdência social de 2019 (BRASIL, 2019) e a Pandemia de Covid-19 em 2020. Para uma análise de longo prazo, esses dois acontecimentos são recentes. Dado que a previdência social é uma política pública

perene, estudos, inferências e projeções devem ser contínuas a fim de englobar informações socioeconômicas novas e relevantes.

7. Referências

AFONSO, L. E.; CARVALHO, J. V. DE F. Show do trilhão no RGPS? Quantificando os aspectos fiscais e distributivos da reforma da previdência do governo Bolsonaro. **Revista Brasileira de Economia**, v. 75, n. 2, p. 116–148, abr. 2021.

BLANCHARD, O.; PEROTTI, R. An empirical investigation of the dynamic effects of shocks to government spending and taxes on output. **Quarterly Journal of Economics**, v. 110, p. 1-33, 2002.

BRASIL. Constituição (1988). **Emenda n. 103. Altera o sistema de previdência social e estabelece regras de transição e disposições transitórias**. Diário Oficial da União: seção 1, Brasília, DF, ano 157, n. 221-A, p. 1, 12 nov. 2019.

BRASIL. Lei nº 13.467, de 13 de julho de 2017. Altera a Consolidação das Leis do Trabalho (CLT), aprovada pelo Decreto-Lei nº 5.452, de 1º de maio de 1943, e as Leis n º 6.019, de 3 de janeiro de 1974, 8.036, de 11 de maio de 1990, e 8.212, de 24 de julho de 1991, a fim de adequar a legislação às novas relações de trabalho. Diário Oficial da União: seção 1, Brasília, DF, ano 154, n. 134, p. 1-7, 14 jul. 2017.

BUENO, R. L. S. **Econometria de séries temporais**. 2ª edição, revista e atualizada. São Paulo: Cengage Learning, 2011.

CASALECCHI, A.R.C.; BARROS, G.L. A variação da receita em resposta à atividade econômica.

Nota Técnica IFI nº 2018/19. Brasília: IFI, 2018.

CASALECCHI, A.R.C.; BACCIOTTI, R.R.M. A elasticidade da receita em relação ao PIB. Nota Técnica IFI nº 2021/16. Brasília: IFI, 2021.

DICKEY, D. A. e FULLER, W.A. Distribution of the estimators for autoregressive time series with unit root. **Journal of the American Statistical Association**, v. 74, n. 336, p. 427-431, 1979.

_____. Likelihood ratio statistics for auto-regressive time series with unit root. **Econometrica**, v. 49, nº 4, 1981.

ELLIOT, G., ROTHENBERG, T. J. e STOCK, J. H. Efficient tests for an autoregressive unit root. **Econometrica**, v. 64, n. 4, p. 813-836, 1996.

ENDERS, Walter. Applied econometric time series. Fourth Edition. **Wiley series in probability** and mathematical statistics, Nova York, 4º ed., 2015.

ENGLE, R. F.; GRANGER, C. W. Co-integration and error correction: representation, estimation and testing. **Econometrica**, v. 55, p. 251-276, 1987.

EWING, Bradley. T. The response of the default risk premium to macroeconomic shocks. **The Quarterly Review of Economics and Finance**, v. 43, n. 2, p. 261-272, 2003. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1062976902001473. Acesso em: 07 jan. 2024.

GRANGER, Clive William John. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. **Econometrica.** v. 37, n. 3, p. 424-438, 1969. Disponível em: https://www.jstor.org/stable/1912791. Acesso em: 07 jan. 2024.

JOHANSEN, S.; JUSELIUS, K. Maximum likelihood estimation and inference on cointegration—with applications to the demand for money. **Oxford Bulletin of Economics and statistics,** v. 52, n. 2, p. 169-210, 1990.

JOHANSEN, S. Likelihood-based inference in cointegrated vector autoregressive models. Oxford University Press, Oxford, 1995.

JOHANSEN, S.; MOSCONI, R.; NIELSEN, B. Cointegration analysis in the presence of structural breaks in the deterministic trend. **Econometrics Journal**, v. 3, n. 2, p. 216-249, 2000.

LANNE, M; SAIKKONEN, P; LÜTKEPOHL, H. Comparison of unit root tests for time series with level shifts. **Journal of Time Series Analysis**, 23, p. 667-685, 2002.

_____. Test procedures for unit roots in time series with level shifts at unknown time. **Oxford Bulletin of Economics and Statistics**, v. 65, p. 91-115, 2003.

MARGARIDO, M. A. Elasticidade PIB – Desemprego no Estado de São Paulo: uma aplicação do Modelo Vetorial de Correção de Erro (VEC). In MACHADO, João Victor et al. XVI Ciclo de Debates em Economia Industrial, Trabalho e Tecnologia. 2018.

MARQUEZINI, A.C.G. **Análises das Elasticidades do Produto Interno Bruto do Brasil e da Arrecadação Previdenciária: uma aplicação da co-integração de Engle-Granger**. In MACHADO, João Victor et al. XVI Ciclo de Debates em Economia Industrial, Trabalho e Tecnologia. 2018.

MENDONÇA, M. J.; MEDRANO, L. A. Um modelo econômico para previsão de receita tributária no Brasil. **Economia Aplicada**, v. 17, n. 2, p. 295-329, 2013.

NG, S. e PERRON, P. Lag length selection and the construction of unit root tests with good size and power. **Econometrica**, v. 69, n. 6, p. 1519-1554, 2001.

PERRON, P. The great crash, the oil price shock, and the unit root hypothesis. **Econometrica**, v. 57, n. 6. p. 1361-1401, 1989.

_____ Further evidence on breaking trend functions in macroeconomic variables. **Journal of Econometrics,** v. 80, n. 2, p. 355-385, 1997.

PESARAN, H. Hashem; SHIN, Yongcheol. Generalized impulse response analysis in linear multivariate models. **Economics Letters**, v. 58, n. 1, p. 17-29, 1998. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0165176597002140. Acesso em: 07 jan. 2024.

PHILLIPS, P. C. B. e PERRON, P. Testing for unit root in time series regression. **Biometrika**, v. 75, n. 2, p. 335-346, 1988.

RODRIGUES, Jefferson José. **Elasticidade-PIB de longo prazo da receita tributária no Brasil: abordagem do índice de divisia**. Dissertação de mestrado apresentada ao departamento de economia da Universidade de Brasília. Brasília, 1999.

SAID, S. e DICKEY, D. A. Testing for unit roots in autoregressive-moving average models of unknown order. **Biometrika**, v. 71, p. 599-607, 1984.

SAIKKONEN, P; LÜTKEPOHL, H. Testing for a unit root in a time series with a level shift at unknown time. **Econometric Theory**, v. 18, p. 313-348, 2002.

SANTOS, A. L. M. Análise de Séries Temporais. In: MALBOUISSON, C.; TIRYAKI, G. (Organizadores). **Econometria na prática**. Rio de Janeiro: Atlas Books, 2017.

SECRETARIA DE POLÍTICA ECONÔMICA. **Elasticidade-Renda de Longo Prazo da Arrecadação Bruta dos Tributos Federais.** In Boletim MacroFiscal da SPE, Brasília. p. 13–16, nov. 2020.

VOGELSANG, T.; PERRON, P. Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time. **International Economic Review**, v. 39, n. 4, 1998.

SGAS Quadra 607 - Módulo 49 Via L2 Sul, Brasília-DF CEP: 70200-670